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LFITER TO THE EDITOR 

Topological solitons in a sine-Gordon system with Kac-Baker 
long-range interactions 

P Woafo, J R Kenne and T C Kofane 
tabratoire de Mknique, Facuitt des Sciences, Universlto de sound&, BP 812, 
Yaounde. Cameroun 

Received 8 October 1992, in final bm I January 1993 

AbslracL We derive an implicit form lor lopoiogicai solilons in a sineGordon syslem 
with a long-range interaction ptentiai of the KaSBaker type. The soliton width and 
energy are found to go to infinity as the long-range interaction is increased. The results 
recwer those for the sineGordon system with nearest-neighbour interaclions. 

Recent studies on the effects of long-range interactions on dynamics and 
thermodynamics of anharmonic lattices have revealed interesting new phenomena 
[1,2 and references therein]. Among the various types of long-range interaction 
potential, a well studied example is the so-called KaoJ3aker potential [3] in which 
the interaction between particles falls off exponentially as the separation increases. 
Defined as 

21.. = (C(1- T)/2T]Tli+J 
IJ 

it is encountered in systems undergoing phase transitions. The coefficient C is the 
elastic constant of the lattice. The parameter r defines the range of interaction with 
T E [0, 1[ and can be seen as a measure of the ratio y ,  ,+l/xj of the elastic 
coupling coefficient between the ith particle, the j th  and ( j  + 1)th particles. The 
absolute difference li-jl measures the distance between the particles of sites i and j .  
Thus, when T increases, the range of interaction (the coupling coefficient Vij between 
the particles on sites i and j )  continuously increases. For a given T ,  Vij decreases 
when j increases. Experimentally, one can relate the parameter r to the number 
of neighbouring interactions. This particular potential has been used to describe the 
thermodynamics of a onedimensional a4 system both in the continuum [4] and the 
discrete limits [Z]. It has also been used to describe the dynamics of solitons in an 
anharmonic non-magnetic chain [SI and a magnetic Heisenberg chain [6]. 

Due to the mathematical complexity, the connection between the long-range 
interactions and the widely used sineGordon (SG) substrate potential has received 
limited investigation. By replacing the second partial derivative in the so equation by 
an integral operator which contains both the short-range (local) and the long-range 
(non-local) interactions, Pokrovsky and Virosztek [7] analysed the problem of the 
finite exponent observed in the soliton density at zero temperature. Recently, Braun 
et a1 [SI have considered the Frenkel-Kontorova systems with the power laws and 
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Kac-Baker potential. Taking the KacBaker interactions as perturbations, they have 
found a renormalization of kink parameters (Le. the kink width increases while its 
non-linearity decreases with an increasing range of interaction). But a closed-form 
soliton solution has not yet been obtained. This paper gives a model solution for 
an implicit form of topological or kink solitons in the SG lattice with the KaoBaker 
long-range interaction potentiaL The expressions of kink width L and energy E are 
derived. It is seen that they increase as the range of interaction increases. Our results 
recover those obtained in the short-range limit [9]. 

Let us consider the so Hamiltonian with the Kac-Baker potential (1) 

(2) 
2 H = i m  xdf + ac(1- cos u,) + f x V, (Ui - u j )  

i i j # i  

where ui and di are the displacement and the velocity of the ith particle. m and 
Q are respfdvely the mass of the particle and the amplitude of the SG substrate 
potential. The limit r + 0 reduces to the nearest-neighbour problem and the limit 
r + 1 defines the infinite-range problem. In the latter case, also known as the 
%n der Mals limit, the system may exhibit a continuous phase transition at a b i t e  
temperature [4]. 

The equation of motion for ui which follows from (2) is 

i i i + Q S i n U i + 2 C U i  = L i .  (3) 

The auxiliary quantity L, defined as 

satisfies the following recursive relation 

(r+r- ' )Li  = L i + ~ + L i _ ~ + [ C ( ~ - r ) / r ] ( u i + l + u ; _ l - 2 r u i ) .  (5) 

Although the long-range interaction system with the Hamiltonian (2) is a purely 
discrete model, we can use the property of the &+Baker exponential interaction to 
obtain analytic results, or at least the first-order step solution of the discrete problem. 
Indeed, the recursive relation (5) contains only the nearest-neighbour terms (the local 
terms). Thus we can make use of the continuum approximation and write 

U; + u(z ,  t )  ui+l +U;-] zz 2 4 1 ,  t )  + btuzz 

and 

Li + L(z, t )  Li+l f Libl = 2L(z ,  t )  f b2L2, 

where b is the lattice constant. The subscript 2 z  (or 2t hereafter) stands for 
the second partial (or time) derivative. Then substituting the above relations into 
equation (5) and replacing L by its continuous version of equation (3), we obtain 

rmbZuZzZi + ~ r b ~ ( s i n u ) , + C ( l + r ) b ~ u , , - ( l - r ) ~ ( m u ~ ~  +as inu)  = O .  (6) 
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As expected, for r = 0, equation (6) reduces to the well known SG equation. 
An equation similar to (6) was derived recently by Roseneau [ll] for a weakly 
non-hear ID lanice with N neighbouring interactions by using a method which 
correctly preserves the essential features of the discrete system. But no special link 
was assumed between the coupling coefficients of different neighbouring interactions. 
Consequently, the coefficient of the uzZtt term, as weU as that of the non-hear 
interaction potential term, were given as sums over the N interacting particles. But, 
in our equation (6). the coeffcient of ulltf  depends on the parameter P which 
measures the range of interaction. This is due to the exponential form (link) of the 
elastic coupling coefficients between all the particles of the lattice. 

To End the large-amplitude solutions (kinks and antikinks), we use the procedure 
of [4]. We neglect the fourth-order term in equation (6) in the spirit of the continuum 
approximation and also because this term vanishes for zero-velocity solitons and/or for 
T = 0. Assuming a soliton with a constant velocity V, we deEne the transformation 

Y = (2 - V t ) / t  

with 

Assuming that U is a positive parameter, the solution of equation (8) which 
corresponds to a displacement of particles from one minimum to the other of the 
substrate potential can be obtained by imposing the classical boundary conditions: U 

and uy -+ 0 when y goes to infinity. Then, equation (8) is integrated once to give 

U2 Y = (-2cos U + osin2u+ 2 ) / ( 1 +  ucos U)’ (9) 

which, with the aid of tables of integrals [IO]. leads to 

=F (Y - Yo) = [U + 0)’/2/2] Iog(Zsil~(u/2)/I[2 + 2(1+ 2 C 7 ) c o S * ( U / 2 )  

- u’~21og1[4{o[l+ u c o s ~ ( u / 2 ) c o s 2 ( u / 2 ) } ~ ~ 2  

- 2[1 + 2ocos2(u/2)jj. (10) 

+ 4{(1+ a)ii + u ~ ~ 2 ( u / 2 ) ~  C O S ~ ( U / ~ ) J ” ~ D )  

Equation (10) defines a closed-form kink (positive sign) or antikink (negative sign) 
solution for the SG system with the Kac-Baker long-range interaction potential. 
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F@re 1. 
interaction parameter r. 

Kink width versus the long-range F@m 2. Kink variations Venus the space variable 
e for different values of r. 

As P + 0, U -+ 0 and the implicit expression (10) reduces to the SG kink [9] 

with Ci = C@/m and dZ = Cbz/a.  
gives a measure of the soliton width L,. It increases with T 

(see figure 1) and the soliton slowly disappears. This is shown in figure 2 where U 
is plotted against I (with V = 0) for various values of the long-range interaction 
parameter T. Since the kink width L,  should be greater than a lattice spacing b, the 
soliton solution (10) requires that C > Q and the parameter U therefore vanes from 
0 to 1. 

In the limit T -+ 1, the soliton extension goes to infinity (diverges as (1 - r)-*) 
and U + P for all +. This corresponds to the case in which all the particles sit at the 
top of the well of the so substrate potential and have a maximum energy as shown 
below. The stability analysis of our soliton solution shows that there exists a bound 
state proportional to the spatial derivative U= with zero frequency (the well hown 
Golstone mode). The derivation of other eigenvalues and eigenfvnctions from the 
linearized stability equation (obtained from equation (6) by substituting U(+, t )  by 
U ( Z )  4- $ ( E ,  t) with $ ( E ,  t) e: U(.)) has appeared to be an analytically diffcult 
task since the soliton solution (10) has a complex implicit form. However the limiting 
case P -+ 0 reduces to the well known stability equation of the so model. Moreover, 
by looking for the asymptotic behaviour of the stability equation (3: going to infinity), 
one can obtain the oscillations of particles around the bottom of the SG potential 
wells. 

Using the auxiliary quantity Li  and equation (3) and going to the continuum 
limit, the potential energy of the system can be separated into three parrs 

The parameter 

Ep = 4 + El + -E& (120) 

with 

E, = Q (1-cosu) d+ J 
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E, = - ( m / Z )  uuZt dx J 
where the integrals are taken along the infinite o axis. 

Integrating equation (1Zc) by parts once, we obtain 

where Ek is the soliton kinetic energy. We then substitute equation (9) and obtain 
after some cumbersome algebra the total energy E of the soliton in the form 

E = aac(l+ U)'/' + (4mV2/Eo11' +- 2a[/a'l2 - 4a!57'1z) 

xlog[(l t u ) ' 1 z t u ' / 2 ]  + (4mV2/~)[(~+u)/a(l-u)]112tan-'[a/(l-~)]'~Z. 
(13) 

750 

so 

0 0.25 a5 
F@m 3. Soliton energy versus r. 

~'~~~ 

An analysis of equation (13) shows that E goes to infinity as P - 1. This state, 
as mentioned earlier, is energetically less favourable for the existence of the soliton 
since all the particles sit at the top of the well (an unstable position). In figure 3, we 
have given the variations of the soliton energy as a function of T. It is seen that E is 
an increasing function of the range of interaction. In the limit P -+ 0, E reduces to 

(14) E = 8b(aC)'I2/(1 - V 2 / c; ) 112 

which corresponds to the well known kink energy of the SG model with nearest- 
neighbour interactions 191. 

In summary, we have obtained an implicit expression for topological solitons in 
a I D  SG system interacting via the Ka-Baker potential. The width and the energy 
of solitons are found to go to infinity as the long-range interaction is increased, 
a behaviour qualitatively similar to that obtained in the Q4 model with the same 
potential [4]. In the short-range limit, the results reduce to that of the SG system with 
nearest-neighbour interactions. Thermodynamic properties of the model, both in the 
continuum and discrete limits, are currently under investigation and the results will 
be presented in the near future. Moreover, the effect of the long-range interaction 
on the central peak phenomena in the dynamic response function is a subject of 
considerable interest 
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